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Abstract: We present qualitative evidence that closed string tachyon solitons describe

backgrounds of lower-dimensional sub-critical string theory. We show that a co-dimension

one soliton in the low energy effective gravity-dilaton-tachyon theory in general has a flat

string-frame metric, and a dilaton that grows in both directions away from the core, and

is linear in the soliton worldvolume coordinates. Spacetime, as seen in the Einstein frame,

is therefore effectively localized in (D − 1)-dimensions, in which the dilaton is linear, in

agreement with the linear dilaton background of the (D−1)-dimensional sub-critical string.

We construct a number of exactly solvable toy models with specific tachyon potentials that

exhibit these features, and address the question of finding solitons in the bosonic closed

string field theory using the recent advances in computing the tachyon potential.
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1. Introduction

The role of the closed string tachyon in bosonic string theory (or in Type 0 superstrings)

is one of the oldest unsolved puzzles in string theory. Although much progress has been

made in understanding the dynamics of open string tachyons [1, 2], and localized closed

string tachyons [3 – 11], bulk closed string tachyons have remained a mystery.

Sen’s two-part conjecture was the guiding principle in the study of open string tachyons

in unstable D-branes. The first part of the conjecture told us that the ground state is

the closed string vacuum, and the second part told us that (stable) solitons are lower-

dimensional (stable) D-branes. The first part is usually sub-divided into the conjecture

identifying the height of the tachyon potential with the tension of the D-brane, and the

conjecture that there are no open string excitations in the ground state. These conjectures

have been subjected to extensive quantitative tests, and a proof of the first part has recently

been presented in [12, 13].

There is a very similar picture for localized closed string tachyons. Tachyonic instabil-

ities living on or near space-time singularities, like orbifolds, black holes or linear dilatons,

have the effect of smoothing out the space by removing the part of spacetime containing

the singularity, and with it the closed string states localized near the singularity. Though
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we have not yet understood the role of solitons of localized closed string tachyons, it is

likely that they correspond to lower dimensional singularities.

This leads to a natural two-part conjecture for bulk closed string tachyons:

1. The ground state contains no degrees of freedom (perhaps a topological theory).

2. Solitons correspond to lower-dimensional sub-critical closed string theories.1

The convential techniques used to analyze tachyon condensation in the open string

case, and to some extent in the localized closed string case, are much less effective when

applied to the case of bulk closed string tachyons. For example worldsheet RG analysis,

which was very successful in verifying open string tachyon conjectures [15 – 17], as well as

localized closed string tachyon conjectures [3 – 5, 7], is difficult to apply to bulk closed string

tachyons.2 The central charge must decrease along the RG trajectory, and this contradicts

the c = 0 condition of string theory. On the other hand, string field theory, which has

also been extremely useful in the case of open string tachyons is much more difficult to

apply to closed string tachyons. This is because closed string field theory (CSFT) is non-

polynomial; it contains an infinite number of interaction vertices [20]. Nevertheless CSFT

has been used to successfully verify, at a qualitative level, the conjectures associated with

some of the localized closed string tachyons [6, 8]. This gives some hope that it might also

shed light on the bulk closed string tachyon. A major step in this direction has been taken

by Yang and Zwiebach, who computed corrections to the closed string tachyon potential

due to higher level fields [21]. Their result supports the existence of a non-trivial critical

point.

In this paper we will investigate part 2 of the conjecture for the bulk closed string

tachyon of the bosonic string. In particular, we would like to find a co-dimension one

soliton solution of the 26-dimensional closed bosonic string theory, and compare it with

the 25-dimensional sub-critical bosonic string theory.

In section 2 we will first formulate the problem in the low-energy effective theory

of the tachyon, dilaton and graviton. To specify the action we have to know the form

of the tachyon potential. However some general features of the soliton solution will be

independent of the specific potential. We will show that the string metric is flat, and

that the dilaton is linear in the coordinates along the soliton, and grows in the transverse

coordinate as we move away from the core of the soliton. Spacetime as measured in the

Einstein frame therefore collapses away from the soliton, as it did in the time dependent

tachyon background of [22]. We will also show that the lowest mode of the dilaton in this

background decouples from the tachyon, and has a mass given by the slope of the dilaton

along the soliton. All this is consistent with the identification of the soliton as the linear

dilaton vacuum of the 25-dimensional sub-critical string theory.

In section 3 we will present three exactly solvable tachyon-dilaton toy models as exam-

ples of these general features. In each of these models we will ”derive” a tachyon potential

1Indirect evidence for this conjecture was given in the context of p-Adic strings by Moeller and Schn-

abl [14].
2See however [18, 19] for a worlsheet approach to closed string tachyon condensation in super-critical

heterotic string theories, which is used to argue that they decay to the critical heterotic theory.
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starting from a simple ansatz for either the tachyon or dilaton profile of the soliton, and

then solve for the other.

In section 4 we begin an investigation of soliton backgrounds in CSFT, using the

recently obtained results for the potential in [21]. Our results here are preliminary, and

there is definitely room for improvement. However the indication is that the tachyon lump

of the lowest-level cubic potential survives when we include higher level fields and higher

point vertices.

2. Generic features of a closed string tachyon soliton

The low energy effective theory of the gravity-dilaton-tachyon system in the closed bosonic

string (or the NSNS sector of the Type 0 superstring) is given by

S =
1

2κ2

∫

dDx
√−g e−2Φ

(

R + 4(∂µΦ)2 − (∂µT )2 − 2V (T )
)

, (2.1)

where V (T ) = 1
2m2T 2 + · · · . The equations of motion for the metric, tachyon and dilaton

are given respectively by

Rµν + 2∇µ∇νΦ − ∂µT∂νT = 0 (2.2)

∇2T − 2∂µΦ∂µT − V ′(T ) = 0 (2.3)

∇2Φ − 2∂µΦ∂µΦ − V (T ) = 0 . (2.4)

2.1 Co-dimension one soliton

We would like to find a co-dimension one soliton, namely a static solution T̄ (x1), such that

T̄ (x1) approaches a minimum of V (T ) as x1 → ±∞. If there is a unique minimum, the

soliton is a lump, and if there are degenerate minima the soliton is a kink. We will assume

that the metric has the following form

ds2 = dx2
1 + a(x1)

2ηµνdxµdxν , (2.5)

where µ, ν = 0, 2, . . . ,D− 1. The dilaton will depend on all the coordinates in general, but

using the (D − 1)-dimensional Lorentz symmetry we can fix Φ = Φ̄(x1, x2). The different

components of the gravity equation then reduce to

− (D − 1)a−1a′′ + 2∂2
1 Φ̄ − (T̄ ′)2 = 0 (2.6)

− aa′′ − (D − 2)(a′)2 + 2aa′∂1Φ̄ = 0 (2.7)

− aa′′ − (D − 2)(a′)2 + 2∂2
2 Φ̄ + 2aa′∂1Φ̄ = 0 (2.8)

∂1∂2Φ̄ − a−1a′∂2Φ̄ = 0 . (2.9)

From (2.7) and (2.8) we see that ∂2
2Φ̄ = 0, and from (2.7) we see that ∂1Φ̄ is independent

of x2, so we deduce that

Φ̄(x1, x2) = D(x1) + Qx2 , (2.10)
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for some Q. The dilaton must therefore be linear in the soliton ”worldvolume” coordinates.

Equation (2.9) then gives

Qa′ = 0 , (2.11)

so either Q = 0, or a(x1) is a constant which we can set to 1, and the string metric is

flat. We will assume the latter. In this case the remaining gravity equation (2.6), and the

tachyon and dilaton equations reduce respectively to

2D′′ − (T̄ ′)2 = 0 (2.12)

T̄ ′′ − 2D′T̄ ′ − V ′(T̄ ) = 0 (2.13)

D′′ − 2(D′)2 − 2Q2 − V (T̄ ) = 0 . (2.14)

Note that these equations are not independent. Multiplying (2.13) by T̄ ′, using (2.12) to

eliminate T̄ ′, and integrating once gives (2.14) up to a constant of integration. The value

of the constant, and therefore of the dilaton slope Q, is fixed in terms of the parameters of

the tachyon potential by requiring consistency of the three equations.

We saw that the dilaton will generically be linear along the soliton. The qualitative

behavior of the dilaton in the transverse coordinate x1 is also generic. Consider the tachyon

equation (2.13). Regarding x1 as time, this is the equation of motion of a particle with

position T̄ moving in a potential −V (T̄ ) with friction −2D′. In this language the soliton

is described by the motion where the particle begins at x1 → −∞ at a maximum of −V ,

rolls down and up (and then back down and up if the maximum is unique), and ends at a

maximum at x1 → ∞. For this to be a solution D cannot be monotonic. There has to be

as much negative friction as positive friction in order to conserve the total energy. This,

together with the gravity equation (2.12) which implies that D′′ ≥ 0, and the requirement

of smoothness, shows that the dilaton must grow in both directions away from the soliton.3

Since the string metric is flat, this implies that spacetime, measured in the Einstein frame,

collapses away from the soliton. It is effectively localized on the (D − 1)-dimensional

worldvolume of the soliton. The whole picture is consistent with the identification of the

soliton as the flat linear-dilaton background of the (D − 1)-dimensional string theory.

2.2 Fluctuations

The analysis of the fluctuations in this system is very complicated. Even if we ignore the

metric fluctuations and consider only the dilaton and tachyon fluctuations

δT = T − T̄ , δΦ = Φ − Φ̄ , (2.15)

3This implies of course that string perturbation theory breaks down in this background. However it is

possible that this problem is cured by the accompanying tachyon condensate, just like in two-dimensional

string theory with a Liouville potential. It would be interesting to check this.
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the mixing terms in the quadratic action are non-trivial:

1

2κ2

∫

dDx e−2Φ̄

{

− 4V (T̄ ) + 4(∂µδΦ)2 − (∂µδT )2 − V ′′(T̄ )δT 2 + 4V ′(T̄ )δTδΦ

[

8(D′)2 + 8Q2 − 2(T̄ ′)2 − 4V (T̄ )
]

δΦ2 (2.16)

−
[

16D′(∂1δΦ) + 16Q(∂2δΦ) − 4T̄ ′(∂1δT )
]

δΦ

}

.

Defining the canonically normalized fields

φ1 = 2e−Φ̄δΦ φ2 = e−Φ̄δT , (2.17)

we can put the Lagrangian density of the fluctuations into the form φiLijφj , where

L =

[

−∂2 + ∆ 0

−2T̄ ′(D′ + ∂1) ∂2 − ∆ − V ′′(T̄ )

]

(2.18)

and ∆ = (D′)2 −D′′ + Q2. To find the spectrum of fluctuations we need to diagonalize the

above matrix. This is in general a hard problem, but one eigenmode is easily found:

φ(x1, x2, . . . , xD−1) =

[

e−D(x1)φ̃(x2, . . . , xD−1)

0

]

. (2.19)

This describes a mode of the dilaton which is localized on the soliton, and which has a mass

Q. It is tempting to identify it with the dilaton of the (D − 1)-dimensional string theory,

which has precisely this mass. However it is not clear whether this mode will survive, and

with the same mass, once the metric fluctuations are added.

3. Solvable toy models for tachyon solitons

The system of equations (2.12)–(2.14) is hard to solve for a general tachyon potential. In

this section we will consider three exactly solvable toy models which exhibit the generic

features described in the previous section. In these models we will work in reverse: we will

assume a simple form for the tachyon (or dilaton) profile, and derive the corresponding

tachyon potential and dilaton (or tachyon) profile.

3.1 Model 1: tachyon kink

In the first model we assume a kink form for the tachyon

T̄ (x1) = β tanh αx1 . (3.1)

Note that this would be an exact solution for a decoupled tachyon with a potential

V0(T ) = −α2T 2 +
α2

2β2
T 4 . (3.2)

We expect this to be a good approximation to the potential energy for the above solu-

tion at small β, since the dilaton scales as β2. We can compute the exact potential as
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follows. Dividing the tachyon equation (2.13) by T ′, differentiating again, and using (2.12)

to eliminate D gives

(

T ′′

T ′

)′
−

(

T ′)2 − ∂

∂T

(

V ′(T )

T ′

)

T ′ = 0 . (3.3)

Our ansatz for the tachyon satisifies

T̄ ′ =
α

β
(β2 − T̄ 2) , T̄ ′′ =

−2α2

β2
T̄ (β2 − T̄ 2) , (3.4)

so we can integrate twice with respect to T to get

V (T ) =
α2

2

(

−(2 + β2)T 2 +
2β2 + 3

3β2
T 4 − 1

9β2
T 6

)

. (3.5)

The two constants of integration have been determined by the conditions V ′(0) = 0 and

V (0) = 0. The latter is something we expect generically for closed string tachyons. We

can now solve for the dilaton using either the dilaton or tachyon equation, to get

D(x1) = Φ0 +
β2

3

(

ln(cosh αx1) −
1

4
sech2αx1

)

. (3.6)

Consistency of the two equations then requires

Q =
αβ

2
. (3.7)

We see that, as argued on general grounds in the previous section, the dilaton grows away

from the soliton in both directions. In this case the asymptotic behavior as x1 → ±∞ is

linear

D(x1) ∼
1

3
αβ2|x1| . (3.8)

This should be contrasted with the linear dependence on the soliton worldvolume coordinate

Qx2, which is weakly coupled on one side. Spacetime is effectively localized on a semi-

infinite part of the (D − 1)-dimensional soliton. This is consistent with the identification

of the soliton as the linear-dilaton vacuum of the (D − 1)-dimensional sub-critical string

theory.

3.2 Model 2: tachyon lump

In this model we assume a particular lump form for the tachyon

T̄ (x1) = −γ + β tanh2 αx1 . (3.9)

For the special case β = 3γ this is an exact solution for a decoupled tachyon with a

potential [23]

V0(T ) = − 2α2T 2 +
2α2

β
T 3 . (3.10)
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Figure 1: (a) The potential V (T ) with β = 1 for model 1. (b) The tachyon profile T̄ (x1) and the

dilaton profile e−D(x1).

This should be a good approximation to the potential energy of the lump in the tachyon-

dilaton system for small β. To compute the exact potential we will again use (3.3). Defining

τ ≡ T̄ + γ, the lump configuration satisfies

T̄ ′ =
2α√

β

√
τ (β − τ) , T̄ ′′ =

2α2

β
(β − τ)(β − 3τ) . (3.11)

Substituting into (3.3) and integrating twice with respect to T we obtain

V (T ) = α2

[

2βτ − 4τ2 +

(

2

β
− 8β

9

)

τ3 +
16

15
τ4 − 8

25β
τ5

+2C1

(

1

5
τ5/2 − β

3
τ3/2

)

+ C2

]

, (3.12)

where C1 and C2 are integration constants which are determined in terms of β and γ by

V (0) = V ′(0) = 0.

D(x1) = Φ0 +
α
√

β

4
C1x1 +

4β2

15

(

ln(cosh αx1) +
3

8
sech4αx1 −

1

4
sech2αx1

)

, (3.13)

and the consistency of the dilaton and tachyon equations requires

C1 = 0 , Q2 =
1

2
α2C2 . (3.14)

The former relates the parameters β and γ as

β =
4
5γ3 − 3γ
4
3γ2 − 1

. (3.15)

The potential (3.12) is therefore polynomial, and reduces to the simple cubic poten-

tial (3.10) for small β (and γ), as expected. The dilaton is asymptotically given by

D(x1) ∼ 4
15αβ2|x1|, so the region far from the soliton is again strongly coupled. The

picture in the Einstein frame is again that of a spacetime which is effectively (D − 1)-

dimensional.
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Figure 2: (a) The potential V (T ) with γ = 1
2 for model 2. (b) The tachyon profile T̄ (x1) and the

dilaton profile e−D(x1).

3.3 Model 3: dilaton profile

In this model, rather than assuming a tachyon configuration, we start with a simple dilaton

configuration

D(x1) = β ln(cosh x1) , (3.16)

with β > 0. Asymptotically the dilaton grows linearly as in the previous examples. Solving

the gravity equation (2.12) for the tachyon, with the condition T̄ (0) = 0, gives a type of

kink

T̄ (x1) =
√

8β arctan
(

tanh
x1

2

)

. (3.17)

The tachyon potenial is found using the dilaton equation (2.14):

V (T ) = − β(1 + 2β)

( 2 tan( T√
2β

)

1 + tan2( T√
2β

)

)2

+ β − 2Q2 .

The constants β and Q are fixed by the conditions V (0) = V ′(0) = 0. In particular

Q2 =
β

2
. (3.18)

We see again that the slope of the dilaton along the soliton Q is set by the tachyon potential.

In this model we can also analyze the spectrum of fluctuations (2.17) in somewhat

more detail, if we ignore the tachyon-dilaton mixing term in (2.18). We will see that the

fluctuation spectrum is similar to the one found by Zwiebach for the open string tachyon

soliton in [23]. Following Zwiebach’s approach, we expand the fluctuations in terms of

modes transverse to the soliton:

φ1(x1, x2, . . . , xD−1) =
∑

ψn(x1)φ1,n(x2, . . . , xD−1)

φ2(x1, x2, . . . , xD−1) =
∑

χn(x1)φ2,n(x2, . . . , xD−1) , (3.19)
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where the modes satisfy the Schrodinger-like eigenvalue equations

− ψ′′
n + ∆ψn = m2

1,nψn (3.20)

− χ′′
n + (∆ + V ′′(T̄ ))χn = m2

2,nχn . (3.21)

The fields φ1,n and φ2,n living on the soliton then have a mass m1,n and m2,n, respectively.

In the dilaton configuration (3.16) the eigenvalue equations become

− ψ′′
n +

[

β2 − β(β + 1) sech2x1

]

ψn =
(

m2
1,n − Q2

)

ψn (3.22)

− χ′′
n +

[

γ2 − γ(γ + 1) sech2x1

]

χn =
(

m2
2,n − Q2 + δ

)

χn , (3.23)

where γ(γ + 1) = β2 + 5β + 2 and δ = γ2 − (β + 1)2.

The two equations are of the same form as the equation for the fluctuations of the

open string tachyon soliton found in [23], and are exactly solvable. For integer β there

are exactly β discrete bound states for the first equation, and then a continuum. More

generally the number of bound states is given by the greatest integer less than β. Since

the ground state ψ0 has a vanishing ”energy” eigenvalue [23], the mass of the lowest lying

dilaton mode is m1,0 = Q =
√

β/2. This is precisely the mode of (2.19), which we argued

is generic. Surprisingly the mass comes out exactly right for the dilaton field in the linear

dilaton background of the (D − 1)-dimensional sub-critical string. This mode will remain

unchanged when we turn on the tachyon-dilaton mixing term.

From the ground state of the second equation we similarly find that the lowest lying

mode of the tachyon has a mass squared

m2
2,0 = Q2 − δ

= − 3

2
− 5

2
β +

√

β2 + 5β +
9

4
. (3.24)

This mode is tachyonic for all β > 0, but it is less tachyonic than the original D-dimensional

tachyon, which has m2
T = V ′′(0) = −1 − 2β. This also agrees qualitatively with the

interpretation of the soliton as a (D − 1)-dimensional sub-critical string theory. However

this mode will mix with the excited dilaton modes due to the mixing term in (2.18), so an

improved analysis of the coupled fluctuation equations is necessary in order to determine

if its features will persist.

4. Soliton in closed string field theory?

Ultimately the question of closed string tachyon condensation should be addressed in the

context of closed string field theory (CSFT), where the solitons should correspond to non-

vacuum solutions. These will involve an infinite number of fields. In particular the potential

in CSFT depends on the tachyon, dilaton, and an infinite set of massive scalar fields.

Recently Yang and Zwiebach have made some progress in computing this potential in the

bosonic CSFT using the method of level-expansion [21]. We will use their results to address

the question of existence of a co-dimension one soliton in CSFT.

– 9 –
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Figure 3: (a) The potential V (T ) with β = 1 for model 3. (b) The tachyon profile T̄ (x1) and the

dilaton profile e−D(x1).

Other than an infinite number of fileds, CSFT also contains an infinite number of

interaction vertices [20]. This complicates the level-expansion procedure as compared with

open string field theory, since one needs to include an infinite number of terms at each

level. Yang and Zwiebach have proposed the following strategy: compute the quadratic

and cubic terms to the highest possible level, and then add quartic terms level by level.

This strategy is supported by the relative weakness of the quartic terms at a given level

compared with cubic terms at the same total level, and suggests that vertices have an

inherent level which grows with the number of legs [24].

4.1 Cubic tachyon potential

Adopting the notation of [21], the lowest level cubic potential is given by (α′ = 2),4

κ2
V0(t) = −t2 +

38

212
t3 . (4.1)

This has a local minimum at t0 = 213/39 = 0.416, where the value of the potential is

κ2
V0(t0) = − 226

319
= − 0.0577 . (4.2)

The form of the potential is precisely as in our second toy model (3.10), for which there is

an exact lump solution given by (3.9) (see figure 4). The basic quantity one can compute

is the energy density of the soliton. In the open string tachyon case this quantity was to be

compared with the tension of the lower-dimensional D-brane. Here one should presumably

compare it with the vacuum energy in the sub-critical linear dilaton background, but one

has to be careful about the precise relation between the different values of κ in the D

and (D − 1)-dimensional theories. We leave this part for future investigation. For now we

only compute the value of this energy density, or more precisely the difference between the

4We use the lower case t and d to denote the CSFT tachyon and dilaton, to differentiate them from the

corresponding sigma model fields.
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Figure 4: (a) The potential V0(t). (b) The numerical Lump solution for V0.

energy density of the soliton and that of the (true) vacuum,

∆E0 = E0(t(x)) − E0(t0) =

∫ ∞

−∞
dx

[

1

2

(

t′(x)
)2

+ V0(t) − V0(t0)

]

. (4.3)

Note this is energy density per 24-volume, which is actually infinite for both the soliton

and the vacuum, but the difference is finite. Using translational invariance, and changing

the variable of integration to t, we can rewrite this as

∆E0 = 2

∫ t0

t∗

dt
√

2 (V0(t) − V0(t0)) , (4.4)

where t∗ = −212/39 = −0.208 is the turning point where V0(t∗) = V0(t0). This can be

easily evaluated numerically, giving

∆E0 = 0.294 . (4.5)

4.2 Yang-Zwiebach potential

Yang and Zwiebach have computed the cubic potential with fields up to level 4, and terms

up to level 12. This includes the dilaton d and four massive fields f1, f2, f3 and g1, in

addition to the tachyon. Using the results of Moeller [25], they have also computed all the

terms in the quartic potential up to level 4, as well as the tachyon and dilaton contributions

at levels 6 and 8. Their results are summarized in the appendix. The soliton will correspond

to a non-trivial trajectory in the 6-dimensional field space which begins and ends at the

critical point, and which minimizes the energy density. To find the exact trajectory we need
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to solve the coupled system of differential equations which follow from the YZ potential,5

∂2t − ∂tV = 0

∂2d − ∂dV = 0

∂2f1,2 − ∂f1,2
V = 0 (4.6)

−∂2f3 − ∂f3
V = 0

−∂2g1 − ∂g1
V = 0

Even if we truncate to just the tachyon and dilaton this is a very complicated problem.

However, since the tachyon is parameterically small, and the other fields all scale as

t2, we can approximate the soliton by solving for the dilaton and massive fields in terms of

the tachyon using

∂dV = ∂fi
V = ∂g1

V = 0 , (4.7)

and then solving the effective tachyon equation. This corresponds to a trajectory that

starts at the non-trivial critical point, follows the extremum in the dilaton and massive

fields directions through the critical point at the origin, reaches a turning point, and goes

back the same way.6 Taking the quadratic and cubic terms to level eight, and the quartic

terms to level four, we can solve numerically for the trajectory and the corresponding

tachyon effective potential, shown in figure 5. A numerical computation of the energy

density of the lump then yields

∆E = 0.160 . (4.8)

5. Discussion

We have presented evidence that closed string tachyon solitons, if they exist, describe lower-

dimensional sub-critical closed string backgrounds, similar to the way open string tachyon

solitons describe lower-dimensional D-branes. Configurations corresponding to tachyon

lumps or kinks in the low-energy effective gravity-dilaton-tachyon theory generically have

a flat string-frame metric, and a dilaton which grows in both directions away from the

core. Spacetime is therefore effectively localized on the (D − 1)-dimensional worldvolume

of the soliton. In addition, the dilaton depends linearly on the worldvolume coordinates,

which agrees with its expected behavior in the sub-critical theory. One needs to understand

better the spectrum of fluctuations around the solitons to decide whether it agrees, even

qualitatively, with that of the sub-critical string. Ignoring the gravity fluctuations, we

5The kinetic terms of the massive fields f3 and g1 in the CSFT action have the ”wrong” sign, which

goes along with their negative mass terms in (A.5).
6We can get an intuitive feel for why this is a good guess by thinking about the analog particle mechanics

of a particle moving in the up-side-down effective tachyon-dilaton potential V (t, d) obtained by solving for

just the massive fields. The trajectory defined by ∂dV = 0 follows the dilaton valley from the top of the

tachyon hill, through the bottom, to another top, and back.
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Figure 5: (a) Our approximate trajectory is shown on the (t, d) plane with the effective tachyon-

dilaton potential. (b) The effective tachyon potential along the trajectory. The minimum is at

t0 = 0.250 and the potential value at the minimum is V (t0) = −0.0349. The turning point is at

t∗ = −0.160.

find a particular mode of the dilaton which has the correct mass to be the dilaton in the

sub-critical string.

The existence of closed string tachyon solitons depends on the precise form of the

tachyon potential. We gave three toy models for tachyon potentials which admit a co-

dimension one tachyon soliton, and showed that they satisfy the general properties above.

However to determine the actual tachyon potential of the closed bosonic string we must

turn to closed string field theory. The lowest-level cubic tachyon potential admits a simple

lump solution. Using some recent advances in the computation of the potential to higher

levels and vertices, we have argued that the lump solution persists, although we have

not found the exact solution. Further progress may be possible using multi-field soliton

techniques.

By analogy with open string tachyons, the closed string tachyon conjecture suggests

that the solitons should have an energy density related to the vacuum energy density, i.e.

cosmological constant, of the linear-dilaton sub-critical string background,

ΛD =
1

2κ2
D

D − 26

3α′ . (5.1)

However testing the conjecture at a quantitative level requires a better understanding of

the soliton solution in closed string field theory.
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A. The Yang-Zwiebach potential

The cubic potential to level 12, with fields to level 4, is given by [21]:

V
(3)
12 = V

(2)
0 + V

(3)
0 + V

(3)
4 + V

(3)
6 + V

(2)
8 + V

(3)
8 + V

(3)
10 + V

(3)
12 (A.1)

where the different terms correspond to the contributions to the vertex (quadratic or cubic)

given by the superscript, with a total level given by the subscript. These are:

κ2V
(2)
0 = −t2 , κ2V

(3)
0 =

38

212
t3 (A.2)

κ2V
(3)
4 = −27

32
d2t +

(

3267

4096
f1 +

114075

4096
f2 +

19305

2048
f3

)

t2 (A.3)

κ2V
(3)
6 = −25

8
g1td (A.4)

κ2V
(2)
8 = f2

1 + 169f2
2 − 26f2

3 − 2g2
1 (A.5)

κ2V
(3)
8 = − 1

96
f1d

2 − 4225

864
f2d

2 +
65

144
f3d

2

+
361

12288
f2
1 t +

511225

55296
f1f2t +

57047809

110592
f2
2 t +

470873

27648
f2
3 t − 49

24
g2
1t

− 13585

9216
f1f3t −

5400395

27648
f2f3t (A.6)

κ2V
(3)
10 = − 25

5832
(361f1 + 4225f2 − 2470f3) dg1 (A.7)

κ2V
(3)
12 =

1

4096
f3
1 +

74181603769

26873856
f3
2 − 31167227

3359232
f3
3

+
1525225

8957952
f2
1 f2 −

1235

55296
f2
1 f3 +

6902784889

80621568
f2
2f1

− 22628735129

13436928
f2
2 f3 +

1884233

2239488
f2
3 f1 +

4965049817

20155392
f2
3 f2

− 102607505

6718464
f1f2f3 −

961

157464
f1g

2
1 − 207025

17496
f2g

2
1 +

14105

26244
f3g

2
1 (A.8)

The quartic vertices have been computed to level 4 completely, and at levels 6 and 8 for

the tachyon and dilaton only,

κ2V
(4)
0 = −3.1072t4 (A.9)

κ2V
(4)
2 = 3.8721t3d (A.10)

κ2V
(4)
4 = 1.3682t2d2 + t3 (−0.4377f1 − 56.262f2 + 13.024f3 + 0.2725g1) (A.11)

κ2V
(4)
6 = −0.9528td3 + · · · (A.12)

κ2V
(4)
8 = −0.1056d4 + · · · (A.13)

– 14 –



J
H
E
P
1
1
(
2
0
0
6
)
0
6
3

References

[1] A. Sen, Tachyon dynamics in open string theory, Int. J. Mod. Phys. A 20 (2005) 5513

[hep-th/0410103].

[2] W. Taylor and B. Zwiebach, D-branes, tachyons and string field theory, hep-th/0311017.

[3] A. Adams, J. Polchinski and E. Silverstein, Don’t panic! closed string tachyons in ALE

space-times, JHEP 10 (2001) 029 [hep-th/0108075].

[4] C. Vafa, Mirror symmetry and closed string tachyon condensation, hep-th/0111051.

[5] J.A. Harvey, D. Kutasov, E.J. Martinec and G.W. Moore, Localized tachyons and RG flows,

hep-th/0111154.

[6] Y. Okawa and B. Zwiebach, Twisted tachyon condensation in closed string field theory, JHEP

03 (2004) 056 [hep-th/0403051].

[7] M. Headrick, S. Minwalla and T. Takayanagi, Closed string tachyon condensation: an

overview, Class. Quant. Grav. 21 (2004) S1539–S1565 [hep-th/0405064].

[8] O. Bergman and S.S. Razamat, On the CSFT approach to localized closed string tachyons,

JHEP 01 (2005) 014 [hep-th/0410046].

[9] A. Adams, X. Liu, J. McGreevy, A. Saltman and E. Silverstein, Things fall apart: topology

change from winding tachyons, JHEP 10 (2005) 033 [hep-th/0502021].

[10] G.T. Horowitz, Tachyon condensation and black strings, JHEP 08 (2005) 091

[hep-th/0506166].

[11] O. Bergman and S. Hirano, Semi-localized instability of the Kaluza-Klein linear dilaton

vacuum, Nucl. Phys. B 744 (2006) 136 [hep-th/0510076].

[12] M. Schnabl, Analytic solution for tachyon condensation in open string field theory, Adv.

Theor. Math. Phys. 10 (2006) 433 [hep-th/0511286].

[13] I. Ellwood and M. Schnabl, Proof of vanishing cohomology at the tachyon vacuum,

hep-th/0606142.

[14] N. Moeller and M. Schnabl, Tachyon condensation in open-closed p-adic string theory, JHEP

01 (2004) 011 [hep-th/0304213].

[15] J.A. Harvey, D. Kutasov and E.J. Martinec, On the relevance of tachyons, hep-th/0003101.

[16] A.A. Gerasimov and S.L. Shatashvili, On exact tachyon potential in open string field theory,

JHEP 10 (2000) 034 [hep-th/0009103].

[17] D. Kutasov, M. Marino and G.W. Moore, Some exact results on tachyon condensation in

string field theory, JHEP 10 (2000) 045 [hep-th/0009148].

[18] S. Hellerman, On the landscape of superstring theory in D ¿ 10, hep-th/0405041.

[19] S. Hellerman and X. Liu, Dynamical dimension change in supercritical string theory,

hep-th/0409071.

[20] B. Zwiebach, Closed string field theory: quantum action and the B-V master equation, Nucl.

Phys. B 390 (1993) 33 [hep-th/9206084].

[21] H. Yang and B. Zwiebach, A closed string tachyon vacuum?, JHEP 09 (2005) 054

[hep-th/0506077].

– 15 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA20%2C5513
http://arxiv.org/abs/hep-th/0410103
http://arxiv.org/abs/hep-th/0311017
http://jhep.sissa.it/stdsearch?paper=10%282001%29029
http://arxiv.org/abs/hep-th/0108075
http://arxiv.org/abs/hep-th/0111051
http://arxiv.org/abs/hep-th/0111154
http://jhep.sissa.it/stdsearch?paper=03%282004%29056
http://jhep.sissa.it/stdsearch?paper=03%282004%29056
http://arxiv.org/abs/hep-th/0403051
http://arxiv.org/abs/hep-th/0405064
http://jhep.sissa.it/stdsearch?paper=01%282005%29014
http://arxiv.org/abs/hep-th/0410046
http://jhep.sissa.it/stdsearch?paper=10%282005%29033
http://arxiv.org/abs/hep-th/0502021
http://jhep.sissa.it/stdsearch?paper=08%282005%29091
http://arxiv.org/abs/hep-th/0506166
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB744%2C136
http://arxiv.org/abs/hep-th/0510076
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C10%2C433
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C10%2C433
http://arxiv.org/abs/hep-th/0511286
http://arxiv.org/abs/hep-th/0606142
http://jhep.sissa.it/stdsearch?paper=01%282004%29011
http://jhep.sissa.it/stdsearch?paper=01%282004%29011
http://arxiv.org/abs/hep-th/0304213
http://arxiv.org/abs/hep-th/0003101
http://jhep.sissa.it/stdsearch?paper=10%282000%29034
http://arxiv.org/abs/hep-th/0009103
http://jhep.sissa.it/stdsearch?paper=10%282000%29045
http://arxiv.org/abs/hep-th/0009148
http://arxiv.org/abs/hep-th/0405041
http://arxiv.org/abs/hep-th/0409071
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB390%2C33
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB390%2C33
http://arxiv.org/abs/hep-th/9206084
http://jhep.sissa.it/stdsearch?paper=09%282005%29054
http://arxiv.org/abs/hep-th/0506077


J
H
E
P
1
1
(
2
0
0
6
)
0
6
3

[22] H. Yang and B. Zwiebach, Rolling closed string tachyons and the big crunch, JHEP 08

(2005) 046 [hep-th/0506076].

[23] B. Zwiebach, A solvable toy model for tachyon condensation in string field theory, JHEP 09

(2000) 028 [hep-th/0008227].

[24] H. Yang and B. Zwiebach, Dilaton deformations in closed string field theory, JHEP 05 (2005)

032 [hep-th/0502161].

[25] N. Moeller, Closed bosonic string field theory at quartic order, JHEP 11 (2004) 018

[hep-th/0408067].

– 16 –

http://jhep.sissa.it/stdsearch?paper=08%282005%29046
http://jhep.sissa.it/stdsearch?paper=08%282005%29046
http://arxiv.org/abs/hep-th/0506076
http://jhep.sissa.it/stdsearch?paper=09%282000%29028
http://jhep.sissa.it/stdsearch?paper=09%282000%29028
http://arxiv.org/abs/hep-th/0008227
http://jhep.sissa.it/stdsearch?paper=05%282005%29032
http://jhep.sissa.it/stdsearch?paper=05%282005%29032
http://arxiv.org/abs/hep-th/0502161
http://jhep.sissa.it/stdsearch?paper=11%282004%29018
http://arxiv.org/abs/hep-th/0408067

